Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Suzan Özçelik,^a Muharrem Dinçer,^a* Ismail Yıldırım^b and Yunus Akçamur^b

^aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ^bErciyes University, Arts and Sciences Faculty, Department of Chemistry, 38039 Kayseri, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.048 wR factor = 0.097 Data-to-parameter ratio = 10.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{21}H_{20}N_2O_3S$, is a derivative of pyrimidine-2-thione and consists of planar fragments. The

molecules are linked by $C-H \cdots O/C-H \cdots S$ hydrogen bonds

phenyl)pyrimidine-2(1H)-thione

and by $\pi - \pi$ and $C - H \cdots \pi$ interactions.

1-Ethyl-5-(4-methoxybenzoyl)-4-(4-methoxy-

Received 29 April 2004 Accepted 21 May 2004 Online 5 June 2004

Comment

In general, pyrimidines have found much interest for their widespread potential biological activities (Kleemann & Engel, 1982) and medicinal applications, and so their chemistry has been investigated extensively (Brown, 1984, 1985). In particular, various analogues of pyrimidinethiones possess effective antibacterial, antifungal, antiviral, anti-AIDS, insecticidal and miticidal activities (Sankyo Co., 1984; De Clerq & Walker, 1985). Furthermore, many condensed heterocyclic systems, especially when linked to a pyrimidine ring, play an important role as analgesic, antipyretic and anti-inflammatory drugs (Vega *et al.*, 1990), and also as herbicides (Chakaravorty *et al.*, 1992) and plant growth regulators (Shishoo & Jain, 1992). In this paper, we report the crystal structure of the title compound, (I), a pyrimidine-2-thione derivative.

Compound (I) has a pyrimidine ring (N1/C19/N2/C18/C9/C10), a methoxybenzoyl group (C1/O1/C11–C16/O3/C17) and a methoxybenyl group (C2–C7/O2/C8) (Fig. 1 and Table 1). In the pyrimidine ring, the S1==C19 bond distance of 1.666 (3) Å is longer than the 1.61 Å expected for an S==C double bond (Pauling, 1963). The C3–C2–C10–N1 torsion angle is 32.5 (4)° and the mean plane of the methoxybenyl ring forms a dihedral angle of 72.39 (12)° with the mean plane of the methoxybenzoyl group. The pyrimidine ring forms a dihedral angle of 57.08 (13)° with the plane of the methoxybenzoyl group.

There is an intramolecular $C-H\cdots S$ interaction (Fig. 1 and Table 2). There are also two types of intermolecular hydrogen bonds, $C-H\cdots S$ and $C-H\cdots O$ (Fig. 2). In the first of these intermolecular interactions, atom C18 acts as hydrogen-bond

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography

Figure 1

An *ORTEP-3* (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme and the intramolecular interaction. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

PLATON plot (Spek, 1997) of the crystal packing of (I), viewed down the *a* axis and showing the intermolecular hydrogen bonds as dashed lines.

donor to S1 at $(x - \frac{1}{2}, y, \frac{3}{2} - z)$. In the second type, atom C15 acts as donor to O1 at $(x - \frac{1}{2}, y, \frac{3}{2} - z)$. The crystal structure is also stabilized by $\pi - \pi$ stacking interactions between the pyrimidine ring and benzene ring C11–C16 at $(\frac{1}{2} + x, y, \frac{1}{2} - z)$. The distance between the centroids of these rings is 3.784 (3) Å. The crystal structure also contains two C–H··· π interactions (Table 2).

Experimental

An equimolar mixture of 4-(4-methoxybenzoyl)-5-(4-methoxyphenyl)-2,3-dihydro-2,3-furandione (0.49 g, 1.48 mmol), easily obtained from oxalyl dichloride and 4,4'-dimethoxydibenzoylmethane as described by Ziegler *et al.* (1967), and ethylthiourea was refluxed in 30 ml boiling benzene for 3.5 h. After evaporation of the solvent, the oily residue was treated with dry diethyl ether to give a yellow precipitate, which was filtered off and recrystallized from ethanol (yield 0.49 g, 88%; m.p. 466–467 K; Hökelek *et al.*, 2002; Yıldırım *et al.*, 2002). IR (KBr, cm⁻¹): ν 3060–2840 (*w*, aromatic and aliphatic C–H), 1650 (*s*, C=O), 1600 (*s*), 1570 (*m*), 1470 (*m*, C=C,

8.08 (s, 1H at C-6), 7.83–7.50 (two d, 4H, Ph-H), 6.94–6–58 (two d, 4H, Ph-H), 4.82–4.36 (q, 2H, N-CH₂), 3.84 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 1.61 (t, 3H, CH₃). Elemental analysis calculated for $C_{21}H_{20}N_2O_3S$: C 66.29, H 5.30, N 7.36, S 8.42%; found: C 66.49, H 5.21, N 7.14, S 7.93%. Crystal data $C_{21}H_{20}N_2O_3S$ Mo Kα radiation $M_r = 380.45$ Cell parameters from 10 649

aromatic rings), 1110 (m, C=S); ¹H NMR (60 MHz, CDCl₃, p.p.m.): δ

reflections

 $\begin{array}{l} \theta = 1.6 {-} 26.8^{\circ} \\ \mu = 0.20 \ \mathrm{mm}^{-1} \end{array}$

T = 293 (2) K

Prism, yellow

 $0.32\,\times\,0.27\,\times\,0.22$ mm

 $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

 $M_r = 380.45$ Orthorhombic, *Pbca* a = 12.472 (7) Å b = 17.6737 (13) Å c = 17.0718 (12) Å V = 3763 (2) Å³ Z = 8

$D_x = 1.343 \text{ Mg m}^{-3}$

Data collection

3313 independent reflections
1903 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.124$
$\theta_{\rm max} = 25.0^{\circ}$
$h = -14 \rightarrow 14$
$k = -20 \rightarrow 20$
$l = -20 \rightarrow 20$

Refinement

ł

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.048$	independent and constrained
$vR(F^2) = 0.097$	refinement
S = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0365P)^2]$
313 reflections	where $P = (F_o^2 + 2F_c^2)/3$
06 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho = 0.48 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

S1-C19	1.666 (3)	N2-C19	1.386 (3)
O1-C1	1.212 (3)	N2-C20	1.544 (4)
N1-C10	1.322 (3)	C9-C18	1.350 (4)
N1-C19	1.358 (3)	C9-C10	1.426 (3)
N2-C18	1.352 (3)		
C5-O2-C8	118.1 (3)	N1-C19-N2	117.7 (2)
O1-C1-C11	120.8 (2)	N1-C19-S1	121.18 (19)
O1-C1-C9	119.7 (2)	N2-C19-S1	121.0 (2)
C11-C1-C9	119.5 (2)	C21-C20-N2	108.6 (3)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C18-H18···S1 ⁱ C15-H15···O1 ⁱ C21-H21 B ···S1 C17-H17 B ···C $g3^{ii}$	0.95 (3) 0.99 (3) 0.96 0.94 (4)	2.86 (3) 2.54 (3) 2.80 2.86 (3)	3.755 (3) 3.291 (4) 3.383 (4) 3.618 (6)	159 (2) 133 (2) 120 139 (3)
$C21 - H21A \cdots Cg2^{iii}$	0.96	2.76	3.567 (4)	142

Symmetry codes: (i) $x - \frac{1}{2}$, y, $\frac{3}{2} - z$; (ii) -x, -y, -z; (iii) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$. Cg2 and Cg3 denote the centroids of benzene rings C2–C7 and C11–C16, respectively.

H atoms, except those belonging to atom C21, were located in difference Fourier maps and their positional and isotropic displacement parameters were refined. The C-H distances are in the range 0.84 (3)–1.05 (4) Å. H atoms bonded to C21 were positioned geometrically (C-H = 0.96 Å) and included in the subsequent refinement in the riding model approximation $[U_{iso}(H) = 1.5U_{eq}(C)]$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Brown, D. J. (1984). Compr. Heterocycl. Chem. 3, 57-61.
- Brown, D. J. (1985). *The Chemistry of Heterocyclic Compounds, The Pyrimidines*, Suppl. II, edited by A. Weissberger and E. C. Taylor. New York: Interscience.
- Chakaravorty, P. K., Grelnlee, W. J., Dooseap, K., Mantlo, N. B. & Patchett, A. A. (1992). APCT Int. Appl. WO 92.20.687.156; *Chem. Abstr.* (1993), **118**, 213104d.

- De Clerq, E. & Walker, R. T. (1985). Pharm. Ther. 26, 1-44.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hökelek, T., Sarıp.inar, E., Yıldırım, İ., Akkurt, M. & Akçamur, Y. (2002). Acta Cryst. E58, 030-032.
- Kleemann, A. & Engel, J. (1982). Pharmazeutische Wirkstoffe. 2. Aufl., pp. 25, 225, 375, 478, 641. Stuttgart: Georg Thieme Verlag..
- Pauling, L. (1963). *The Nature of the Chemical Bond*, 3rd ed. New York: Cornell University Press.
- Sankyo Co. (1984). Chem. Abstr. 101, 110939.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Shishoo, C. J. & Jain, K. S. (1992). J. Heterocycl. Chem. 29, 883-893.
- Spek, A. L. (2003). J. Appl. Cryst 36, 7-13.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Vega, S., Alonso, J., Diaz, J. A. & Junquera, F. (1990). J. Heterocycl. Chem. 27, 269–273.
- Ziegler, E., Eder, M., Belegratis, C. & Prewedourakis, E. (1967). *Monatsh. Chem.* 98, 2249–2251.