Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Suzan Özçelik, ${ }^{\text {a }}$ Muharrem Dincer, ${ }^{\text {a* }}$ Ismail Yıldırım ${ }^{\text {b }}$ and Yunus Akçamur ${ }^{\text {b }}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Erciyes University, Arts and Sciences Faculty, Department of Chemistry, 38039 Kayseri, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.097$
Data-to-parameter ratio $=10.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Ethyl-5-(4-methoxybenzoyl)-4-(4-methoxy-phenyl)pyrimidine-2(1H)-thione

The title compound, $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, is a derivative of pyrimidine-2-thione and consists of planar fragments. The molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds and by $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

In general, pyrimidines have found much interest for their widespread potential biological activities (Kleemann \& Engel, 1982) and medicinal applications, and so their chemistry has been investigated extensively (Brown, 1984, 1985). In particular, various analogues of pyrimidinethiones possess effective antibacterial, antifungal, antiviral, anti-AIDS, insecticidal and miticidal activities (Sankyo Co., 1984; De Clerq \& Walker, 1985). Furthermore, many condensed heterocyclic systems, especially when linked to a pyrimidine ring, play an important role as analgesic, antipyretic and anti-inflammatory drugs (Vega et al., 1990), and also as herbicides (Chakaravorty et al., 1992) and plant growth regulators (Shishoo \& Jain, 1992). In this paper, we report the crystal structure of the title compound, (I), a pyrimidine-2-thione derivative.

(I)

Compound (I) has a pyrimidine ring (N1/C19/N2/C18/C9/ C 10), a methoxybenzoyl group ($\mathrm{C} 1 / \mathrm{O} 1 / \mathrm{C} 11-\mathrm{C} 16 / \mathrm{O} 3 / \mathrm{C} 17$) and a methoxyphenyl group ($\mathrm{C} 2-\mathrm{C} 7 / \mathrm{O} 2 / \mathrm{C} 8$) (Fig. 1 and Table 1). In the pyrimidine ring, the $\mathrm{S} 1=\mathrm{C} 19$ bond distance of 1.666 (3) \AA is longer than the $1.61 \AA$ expected for an $\mathrm{S}=\mathrm{C}$ double bond (Pauling, 1963). The $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 10-\mathrm{N} 1$ torsion angle is $32.5(4)^{\circ}$ and the mean plane of the methoxyphenyl ring forms a dihedral angle of $72.39(12)^{\circ}$ with the mean plane of the methoxybenzoyl group. The pyrimidine ring forms a dihedral angle of $57.08(13)^{\circ}$ with the plane of the methoxybenzoyl group.

There is an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interaction (Fig. 1 and Table 2). There are also two types of intermolecular hydrogen bonds, $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (Fig. 2). In the first of these intermolecular interactions, atom C18 acts as hydrogen-bond

Received 29 April 2004
Accepted 21 May 2004 Online 5 June 2004

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme and the intramolecular interaction. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
PLATON plot (Spek, 1997) of the crystal packing of (I), viewed down the a axis and showing the intermolecular hydrogen bonds as dashed lines.
donor to S 1 at $\left(x-\frac{1}{2}, y, \frac{3}{2}-z\right)$. In the second type, atom C15 acts as donor to O 1 at $\left(x-\frac{1}{2}, y, \frac{3}{2}-z\right)$. The crystal structure is also stabilized by $\pi-\pi$ stacking interactions between the pyrimidine ring and benzene ring C11-C16 at $\left(\frac{1}{2}+x, y, \frac{1}{2}-z\right)$. The distance between the centroids of these rings is 3.784 (3) A. The crystal structure also contains two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2).

Experimental

An equimolar mixture of 4-(4-methoxybenzoyl)-5-(4-methoxy-phenyl)-2,3-dihydro-2,3-furandione $(0.49 \mathrm{~g}, \quad 1.48 \mathrm{mmol})$, easily obtained from oxalyl dichloride and 4,4'-dimethoxydibenzoylmethane as described by Ziegler et al. (1967), and ethylthiourea was refluxed in 30 ml boiling benzene for 3.5 h . After evaporation of the solvent, the oily residue was treated with dry diethyl ether to give a yellow precipitate, which was filtered off and recrystallized from ethanol (yield $0.49 \mathrm{~g}, 88 \%$; m.p. $466-467 \mathrm{~K}$; Hökelek et al., 2002; Yildırım et al., 2002). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 3060-2840 (w, aromatic and aliphatic $\mathrm{C}-\mathrm{H}), 1650(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1600(\mathrm{~s}), 1570(\mathrm{~m}), 1470(\mathrm{~m}, \mathrm{C}=\mathrm{C}$,
aromatic rings), $1110(m, \mathrm{C}=\mathrm{S}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, p.p.m.) : δ 8.08 ($s, 1 \mathrm{H}$ at C-6), 7.83-7.50 (two $d, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$), 6.94-6-58 (two $d, 4 \mathrm{H}$, $\mathrm{Ph}-\mathrm{H}), 4.82-4.36\left(q, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 3.84\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78(s, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.61\left(t, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Elemental analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C 66.29, H 5.30, N 7.36, S 8.42%; found: C 66.49, H 5.21, N 7.14, S 7.93\%.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=380.45$
Orthorhombic, Pbca
$a=12.472$ (7) \AA
$b=17.6737$ (13) \AA
$c=17.0718(12) \AA$
$V=3763(2) \AA^{3}$
$Z=8$
$D_{x}=1.343 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-2 diffractometer ω rotation scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.951, T_{\text {max }}=0.975$
33217 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.097$
$S=1.01$
3313 reflections
306 parameters

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 19$	$1.666(3)$	$\mathrm{N} 2-\mathrm{C} 19$	$1.386(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.212(3)$	$\mathrm{N} 2-\mathrm{C} 20$	$1.544(4)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.322(3)$	$\mathrm{C} 9-\mathrm{C} 18$	$1.350(4)$
$\mathrm{N} 1-\mathrm{C} 19$	$1.358(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.426(3)$
$\mathrm{N} 2-\mathrm{C} 18$	$1.352(3)$		
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 8$	$118.1(3)$	$\mathrm{N} 1-\mathrm{C} 19-\mathrm{N} 2$	$117.7(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 11$	$120.8(2)$	$\mathrm{N} 1-\mathrm{C} 19-\mathrm{S} 1$	$121.18(19)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 9$	$119.7(2)$	$\mathrm{N} 2-\mathrm{C} 19-\mathrm{S} 1$	$121.0(2)$
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 9$	$119.5(2)$	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{N} 2$	$108.6(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{~S}^{\mathrm{i}}$	$0.95(3)$	$2.86(3)$	$3.755(3)$	$159(2)$
$\mathrm{C} 15-\mathrm{H} 15 \cdots 1^{\mathrm{i}}$	$0.99(3)$	$2.54(3)$	$3.291(4)$	$133(2)$
$\mathrm{C} 21-\mathrm{H} 21 B \cdots \mathrm{~S} 1$	0.96	2.80	$3.383(4)$	120
$\mathrm{C} 17-\mathrm{H} 17 B \cdots \mathrm{Cg}^{\mathrm{ii}}$	$0.94(4)$	$2.86(3)$	$3.618(6)$	$139(3)$
$\mathrm{C} 21-\mathrm{H} 21 A \cdots \mathrm{Cg}^{\mathrm{iii}}$	0.96	2.76	$3.567(4)$	142

Symmetry codes: (i) $x-\frac{1}{2}, y, \frac{3}{2}-z$; (ii) $-x,-y,-z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z . C g 2$ and $C g 3$ denote the centroids of benzene rings $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 11-\mathrm{C} 16$, respectively.

H atoms, except those belonging to atom C21, were located in difference Fourier maps and their positional and isotropic displacement parameters were refined. The $\mathrm{C}-\mathrm{H}$ distances are in the range $0.84(3)-1.05(4) \AA . \mathrm{H}$ atoms bonded to C 21 were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.96 \AA$) and included in the subsequent refinement in the riding model approximation $\left[U_{\text {iso }}(H)=1.5 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Brown, D. J. (1984). Compr. Heterocycl. Chem. 3, 57-61.
Brown, D. J. (1985). The Chemistry of Heterocyclic Compounds, The Pyrimidines, Suppl. II, edited by A. Weissberger and E. C. Taylor. New York: Interscience.
Chakaravorty, P. K., Grelnlee, W. J., Dooseap, K., Mantlo, N. B. \& Patchett, A. A. (1992). APCT Int. Appl. WO 92.20.687.156; Chem. Abstr. (1993), 118, 213104d.

De Clerq, E. \& Walker, R. T. (1985). Pharm. Ther. 26, 1-44.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hökelek, T., Sarıp.inar, E., Yıldırım, İ., Akkurt, M. \& Akçamur, Y. (2002). Acta Cryst. E58, o30-o32.
Kleemann, A. \& Engel, J. (1982). Pharmazeutische Wirkstoffe. 2. Aufl., pp. 25, 225, 375, 478, 641. Stuttgart: Georg Thieme Verlag..
Pauling, L. (1963). The Nature of the Chemical Bond, 3rd ed. New York: Cornell University Press.
Sankyo Co. (1984). Chem. Abstr. 101, 110939.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Shishoo, C. J. \& Jain, K. S. (1992). J. Heterocycl. Chem. 29, 883-893.
Spek, A. L. (2003). J. Appl. Cryst 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Vega, S., Alonso, J., Diaz, J. A. \& Junquera, F. (1990). J. Heterocycl. Chem. 27, 269-273.
Ziegler, E., Eder, M., Belegratis, C. \& Prewedourakis, E. (1967). Monatsh. Chem. 98, 2249-2251.

